
NOESY上相关信号描述的是化合物H之间空间距离的远近关系,与COSY,TOCSY等依赖化学键传递不同,不同H之间即使相隔多键,只要他们空间上相互接近(如下图),就可以在NOESY谱图上找到相关点。

图中的NOE是Nuclear Overhauser Effect的缩写,之前在讨论C13CPD中曾经出现过,是指当照射H核时邻近C核的谱峰也相应增强,而在同核中这一效应同样存在:当照射H核时,与其空间上小于4A(埃)的H信号会获得轻微的增强(不超过20%)并被检测到,该效应强烈依赖空间距离(与距离的6次方成反比)。凭借这一特殊性质,NOESY实验成为了化学家,生物学家们研究分子空间结构以及生物大分子结构与功能关系的强大工具。
但NOESY要做成功并不容易。NOE效应与分子本身有关,一般在NOESY谱图中将对角峰调为正吸收,此时NOE信号在谱图上的正负取决于一个与分子运动状况相关的参数(慢运动条件下为正峰,快运动条件下为负峰),但尴尬的是当这一运动正好处在一个不快不慢的状态时,即使相隔很近的H之间也无法观察到NOE效应。由于分子运动状况常和分子大小相关,因此NOESY更适合于大分子和小分子,而我们最常遇到的中等分子信号增强往往很弱。不过,之后提到的ROESY实验可以克服这方面的问题。

在日常应用中,NOESY的实验参数优化就是混合时间的优化。上图中横坐标为混合时间,虚线为不同混合时间对应下交叉峰的强弱,可以看到对于不同大小的分子,存在一个最优的混合时间使交叉峰最强(一般分子量大的最优混合时间短)。通常,这个时间接近于分子各峰平均的纵向弛豫时间T1,针对我们的化合物,我通过零点法优化混合时间如下

d8是反转恢复后的等待时间。比较而言,在0.7秒时大部分峰接近于零点,零点法公式可以估算出1.0秒为系统的平均T1,这也是我优化后的混合时间。

上图是在系统默认0.3秒混合时间以及优化后的1.0秒下所做谱图的对比。在将对角峰调到相近强度时可以看到优化后的谱图(右)交叉峰明显更强。
回到一开始给出的NOESY谱图。实际上这一化合物的NOESY并不典型:由于样品浓度很高以及DMSO对于氢键的稳定作用,使得分子内以及分子间围绕着结构中的N和O在氢键作用下形成了各种不同的空间构象。需要强调的是,与依赖键传递的二维谱不同,NOE信号可以在不同分子间传递!因此,当抬高阈值时,我们看到了太多的NOESY信号(下图)

大家可以试着围绕N,O画出两个分子间可能形成的各种氢键连接便能理解这一画面出现的原因了。不过还是可以看到,最强的NOE信号出现在H6-H7,H9-H14以及H9-H10之间,这暗示着分子内氢键在整个体系中占了最大的比例。
最后要提的一点是,由于脉冲序列相似,NOESY中经常夹杂着COSY信号,这点需要在解谱时予以区分(好在键相近的核空间距离往往接近)。而另外一种用来检测分子内化学交换的谱图(EXSY)和NOESY用的是同一个脉冲序列。





















